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1. Introduction

Solitons have a very important role in several areas of Physics. In particular, they are

useful in the understanding of many non-perturbative (strong coupling) phenomena. The

appearance of solitons requires a rich symmetry structure, leading to conservation laws,

and therefore they underlie the integrability properties of the models. Although the 1 + 1

soliton theory is well developed, very few exact results are known about solitons in higher

dimensions [1]. In this Letter we construct an infinite number of exact soliton solutions,

carrying Hopf topological charges, in a 3 + 1 dimensional, Lorentz invariant theory, and

possesing an infinite number of conservation laws. An important feature of the solitons is

that, in the far past and far future, their energy density is vanishingly small and distributed

over a large region of space. For finite times the energy density builds up in a small portion

of space. In addition, the solutions depend upon a free parameter that allows to re-scale

their size and rate of time evolution. The condition for the total energy to be conserved

also implies that the Hopf topological charge should be non-trivial. The model is a rare

and interesting example of an integrable theory in four dimensions, and its solitons may

have an important role in the low energy limit of the Yang-Mills theories, as we discuss at

the end of this Letter. In addition, our work may be of interest in the study of the solitons

of the Skyrme-Faddeev model [2]. The theory is defined by the action

S = − 1

e2

∫

d4xH2
µν (1.1)

where Hµν is the pull-back of the area form on S2

Hµν ≡ −2i
(∂µu∂νu

∗ − ∂νu∂µu∗)

(1+ | u |2)2
= ~n · (∂µ~n ∧ ∂ν~n) (1.2)
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with u being a complex scalar field, related to the triplet of scalar fields ~n living on S2 (~n2 =

1) through the stereographic projection ~n =
(

u + u∗,−i (u − u∗) , | u |2 −1
)

/
(

1+ | u |2
)

.

The Euler-Lagrange equations are

∂µKµ = 0 ; Kµ ≡ Hµν ∂νu (1.3)

together with its complex conjugate. The action (1.1) and the eqs. of motion (1.3) are

invariant under the conformal group SO(4, 2) of four-dimensional Minkowski space-time

[3]. They are also invariant under the area preserving diffeomorphisms of S2, and the

infinite set of associated Noether currents are given by [4]

JG
µ = (δG/δu)Kµ + (δG/δu∗)K∗

µ (1.4)

where G is any functional of u and u∗, but not of their derivatives.

2. Solutions

We introduce the coordinates1

x0 = (a/p) sin ζ ; x1 = (a/p) cos ϕ/
√

1 + y (2.1)

x3 = (a/p) sin ξ
√

y/ (1 + y); x2 = (a/p) sin ϕ/
√

1 + y

with p = cos ζ − cos ξ
√

y/(1 + y), and a is a constant with dimension of length. The range

of the coordinates are: y ≥ 0, 0 ≤ ξ , ϕ ≤ 2π, and 0 ≤ ζ ≤ π. Notice that the range of ζ is

restricted because (ζ, y, ξ, ϕ) and (ζ + π, y, ξ + π, ϕ + π) give the same point on Minkowski

space-time. We introduce the ansatz [5, 3]

u =
√

(1 − g) /g ei(m1 ξ+m2 ϕ+m3 ζ) (2.2)

with g = g (y), and 0 ≤ g ≤ 1. In order for u to be single valued we need m1 and m2

to be integers. In addition, (ζ = 0, y, ξ, ϕ) and (ζ = π, y, ξ + π, ϕ + π) correspond to the

same point
(

x0 = 0, x1, x2, x3
)

. Therefore, we also need m1 + m2 + m3 = 2N , with N

being an integer, in order for u to be single valued. Replacing (2.2) into (1.3) we reduce

those four-dimensional non-linear partial differential equations into a single linear ordinary

differential equation given by

∂y (Λ ∂yg) = 0 ; Λ ≡ m2
1 (1 + y) + m2

2 y (1 + y) − m2
3 y (2.3)

The analysis of the solutions is very simple. For m2 = 0 the solution is logarithmic and

so diverges for y → ∞. Since we need 0 ≤ g ≤ 1, for y ≥ 0, the only acceptable solution

is g = constant, which we shall discard. For the same reasons Λ can not have real and

positive zeroes for m2 6= 0. Since those are given by y± = −b ±
√

∆, with

b =
[

(m1 + m3) (m1 − m3) + m2
2

]

/2m2
2 (2.4)

∆ =
[

(m1 + m3)
2 − m2

2

] [

(m1 − m3)
2 − m2

2

]

/4m4
2

1Notice they correspond to the toroidal coordinates of ref [5] for ζ = 0 and y = 1/ sinh2 η.
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we can not have b < 0 and ∆ ≥ 0, which happen whenever (m1 + m3) /m2 ≥ 1 and

(m1 − m3) /m2 ≤ −1 or (m1 − m3) /m2 ≥ 1 and (m1 + m3) /m2 ≤ −1. Therefore, the

solutions satisfying the boundary conditions g (0) = 1 and g (∞) = 0, are (m2 6= 0)2

g =
b

y + b
; for ∆ = 0 ; b > 0 (2.5)

g =
ArcTan

(√
−∆/ (y + b)

)

ArcTan
(√

−∆/b
) ; for ∆ < 0 ; any b

g =
ln

[(

y + b +
√

∆
)

/
(

y + b −
√

∆
)]

ln
[(

b +
√

∆
)

/
(

b −
√

∆
)] ; for ∆, b > 0

They are all monotonically decreasing functions of y, from 1 at y = 0, to 0 for y → ∞.

In order to visualize the time evolution of the solutions we have to take slices of constant

x0 = c t. The best way to do it, is to trade the coordinate ζ in favour of the dimensionless

time τ = ct/a. From (2.1) one has that τ2p2 = 1 − cos2 ζ, which is a quadratic equation

for cos ζ in terms of τ2. The two solutions lead to equivalent descriptions of the constant

time slices. With one of those choices, the Cartesian space coordinates on the time slices

are written as

x1 =
a

q
cos ϕ ; x2 =

a

q
sin ϕ ; x3 =

a

q
sin ξ

√
y (2.6)

with q =

q

1+y+τ2(1+y sin2 ξ)−cos ξ
√

y

1+τ2 . The form of the solutions can be understood through

their surfaces of constant n3, the third component of the scalar fields on S2 (see (1.2) and

below). From (2.2) one has that n3 = 1− 2g . So, fixed n3 means fixed g, which in its turn

means fixed y, since from (2.5), we have that g is a monotonic function of y. Therefore,

for a given fixed time τ the surfaces of constant n3 are obtained from (2.6) by varying the

angles ξ and ϕ, and keeping y fixed. Notice that such surfaces are valid for any solution

given in (2.2) and (2.5). The only thing is that the chosen fixed value of y corresponds to

different values of n3 for different solutions. From (2.6) and the form of q, we see that such

surfaces are invariant under rotations around the x3-axis, and under the time reflection

τ → −τ . They are toroidal surfaces around the x3-axis. In figure 1 we show their cross

sections, at some fixes values of time, through the half-plane x3ρ, with ρ =
√

x2
1 + x2

2.

Some general properties of the solutions are: i) The surface for n3 = −1, which implies

g = 1 and so y = 0, is a circle on the plane x3 = 0 with center at the origin and radius

a
√

1 + τ2; ii) The surface for n3 = 1, which implies g = 0 and so y → ∞, corresponds to

the x3-axis plus the spatial infinity, for any time τ (The reason is that for ξ 6= 0, the limit

y → ∞ gives | q |→ ∞, and for ξ = 0 gives q → 0); iii) For τ = 0 the surfaces of constant

n3, for −1 < n3 < 1, are torus centered around the origin with a tickness that grows as

n3 varies from −1 to 1. As τ flows towards the future or the past, those torus get ticker

and their cross section deform from a circle to a quarter moon shape as shown in figure 1;

iv) The solution performs one single oscillation as τ varies from −∞ to ∞. Although the

surfaces of constant n3 are symmetrical under the interchange τ ↔ −τ , the same is not true

2The ArcTan is assumed to take values from 0 to π.
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Figure 1: Cross sections of the surfaces of constant n3 for n3 = 1 − 2g (y = 1), and at the times

τ = ct/a = 0, 2, 5, 8. The vertical and horizontal axis correspond to x3/a and ρ/a respectively. The

surfaces are invariant under τ → −τ .

for the energy density as shown below; v) Due to Derrick’s scaling argument, the theory

(1.1) can not have stable static solutions in 3 + 1 dimensions, and so our solutions can not

be put at rest, even though the limit of large a slow down their time evolution.

3. Hopf charge

The condition for finite energy requires the field ~n to be constant at spatial infinity. For

any fixed time, our solutions have ~n → (0, 0, 1) for r → ∞ (r2 = x2
1 + x2

2 + x2
3). Therefore,

for topological considerations, we can compactify R
3 into S3, and the solution defines a

Hopf map S3 → S2, for any fixed time. The Hopf index is calculated as follows: given the

solution (2.2) and (2.5) we map R
3 into S3

Z through

Z =

(

z1

z2

)

=

(√
1 − g ei(m1ξ+m3ζ)

√
g e−i(m2ϕ)

)

with Z† Z = 1, and so the four real parameters in Z parametrize S3
Z . Then we map S3

Z

into S2
u through u = z1/z2. The Hopf index is defined as

QH =
1

4π2

∫

d3x ~A ·
(

∇∧ ~A
)

(3.1)

with ~A = i
(

Z†~∇Z − ~∇Z† Z
)

/2. Using,3 one then gets ~A · (~∇ ∧ ~A) = −∂yg

aρ4 m2(m1(a
2

+R2) + 2m3 x0 x3), with R2 = x2
0 + x2

1 + x2
2 + x2

3. Notice that y is an even function of all

xµ’s 3 and so is ∂yg. Therefore, the term proportional to m3, being odd in x3, vanishes

when integrated on space. The volume element on the time slices (2.6) is

d3x = dy dξ dϕaρ4/
(

a2 + R2
)

. (3.2)

3From (2.1): y =
(a

2
+s

2)2+4a
2
x
2

3

4a2ρ2 , tanϕ = x
2

x1 , tan ζ = 2ax
0

a2
−s2 , and tan ξ = −

2ax
3

a2+s2 , with s2 = x2
0−ρ2

−x2
3.
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The Hopf index (3.1) for the solutions (2.2) and (2.5) is then

QH = −m1m2 (g (∞) − g (0)) = m1m2 . (3.3)

4. Noether charges

Among the charges associated to the currents (1.4) there is an infinite abelian subset cor-

responding to the cases where G is a functional of the norm of u only, or equivalently

a functional of g = 1/(1+ | u |2) (see (2.2)). One can easily check that the Poisson

brackets of the densities JG
0 , associated to such choice of G, does vanish [4]. If one

substitute (2.2) into (1.4) and uses3 one gets that, for G being a functional of g only,

JG
0 = 4 (∂yg)2 δG

δg

[

2m1 (1 + y) x0x3 + m3y
(

a2 + R2
)]

/aρ4. Since y is an even function of

all Cartesian coordinates xµ, it follows that the term propotional to m1, being odd in x3,

vanishes when integrated on the whole space. Using (3.2) one gets that the corresponding

Noether charges are QG = 16π2m3

∫ ∞
0 dy y (∂yg)2 δG

δg
. Using (2.3) and (2.5) one gets

∂yg = − C

Λ
; C =

(

m2
1 + m2

2 − m2
3

)

w/ ln
1 + w

1 − w
(4.1)

with w =
√

∆/b, and ∆, b satisfying any of the three conditions in (2.5). Notice that in all

those cases we have C > 0, and in particular for ∆ = 0 one has C =
(

m2
1 + m2

2 − m2
3

)

/2.

Then taking G = gn/16π2n!, one gets that such charges evaluated on the solutions (2.5)

are given by

Q(n) = m3 F (n) (w) ; n = 1, 2, 3 . . . (4.2)

with

F (n) (w) = (ln(1 + w)/(1 − w))−n−1 ×

×
[

−2ε− (n) +

n
∑

l=1

(

ε+ (n − l)

w
− ε− (n − l)

)

1

l!

(

ln
1 + w

1 − w

)l
]

(4.3)

with ε± (n) = (1 ± (−1)n) /2. For the case ∆ = 0, those charges simplify to Q(n) =

m3n/(n + 2)!. The case n = 1 corresponds to the U(1) subgroup of the S2-area preserving

diffeomorphism group generated by u → eiαu.

5. Angular momentum

The angular momentum is given by Li = 1
2εijk

∫

d3xM0
(jk), with Mµ

(ρσ) = T µ
ρ xσ − T µ

σ xρ,

and T µ
ν being the canonical energy-momentum tensor associated to (1.1). For the solutions

(2.2) and (2.5) it is

L3 =
128π2

e2
m2 m3 F (1) (w) ; L1 = L2 = 0 . (5.1)

– 5 –
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Figure 2: Plots of the energy density H (6.1), in units of 8

e
2 , as a function of ρ/a (left-front

axis) and x3/a (right-front axis). H is invariant under rotations around the x3-axis and under the

joint parity transformations τ → −τ and x3 → −x3. The top row correspond to the soliton with

(m1, m2, m3) = (1, 4, 1), at the times τ = ct/a = 0, 2, 6, and the bottom row to the soliton with

(m1, m2, m3) = (4, 1, 1), at the same times. These two solitons have the same total energy (6.2),

Noether charges (4.2) and Hopf charge (3.3), but the soliton (1, 4, 1) has four times more angular

momentum (5.1) than the soliton (4, 1, 1).

6. Energy

The Hamiltonian density associated to (1.1) is H = (2/e2)
(

∑

i H
2
0i +

∑

i<j H2
ij

)

, with

i, j = 1, 2, 3. For the ansatz configurations (2.2) one gets that

H =
8

e2
(∂yg)2

(

m2
1E1 + m2

2E2 + m2
3E3 + 2m1m3E13

)

(6.1)

with E13 =
4x0x3(a2+R2)

a2ρ6 , E1 = 4
ρ4

(

1 + y +
2x2

0r2

a2ρ2

)

, E2 = 4
ρ4

(

y (1 + y) +
x2
0(a2+s2)

2

2a4ρ2

)

, and

E3 = 4
ρ4

(

y +
2x2

0x2
3

a2ρ2

)

. The energy density is axially symmetric, and invariant under the joint

parity transformations x0 → −x0 and x3 → −x3. In figure 2 we show the time evolution

of H for two particular solitons. Notice that it resembles the time evolution of some types

of Ward’s solitons [6].

The total energy is only conserved when m1,m2 6= 0, and so when the Hopf charge (3.3)

is non vanishing. Indeed, the integration of the term involving E13 vanishes since it is odd in

x3. The other terms give
∫

d3x (∂yg)2 E3 = 8π2

a

∫ ∞
0 dy (∂yg)2 y, and

∫

d3x (∂yg)2 (m2
1E1+

m2
2E2) = 8π2

a
[ τ2

1+τ2 W +
∫ ∞
0 dy (∂yg)2

(

m2
1 (1+y) + m2

2 y (1 + y)
)

], with W =
∫ ∞
0 dy (∂yg)2

×
(

m2
1 − m2

2 y2
)

. From (4.1) one then gets that W = C2y/Λ |y=∞
y=0 . In our analysis below

(2.4) we concluded that we have to have m2 6= 0 for the solutions to be well behaved. But

W does not vanish if m1 = 0 and m2 6= 0. Therefore, in order for the total energy to

be time independent we need m1 6= 0 too. Consequently, E = (8π)2

a e2

∫ ∞
0 dy (∂yg)2 Ω, with

– 6 –
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Ω = m2
1 (1 + y) + m2

2 y (1 + y) + m2
3 y = Λ + 2m2

3 y. Using (4.1) one gets
∫ ∞
0 dy (∂yg)2 Λ =

−C (g (∞) − g (0)), and the remaining integral is proportional to Q(1) (see (4.2)). Then

one gets that

E =
(8π)2

a e2

[

C + 2m2
3 F (1)

]

(6.2)

with C and F (1) given in (4.1) and (4.3). In the case ∆ = 0, which implies m2
2 = (m1 ± m3)

2

(see (2.4)), the energy reduces to E = (8π)2

a e2

(

m2
1 + 1

3m2
3 ± m1m3

)

. The energy E (6.2) is

invariant under the interchange m1 ↔ m2, and under the change of sign of any integer mi,

i = 1, 2, 3, individually. Therefore, it is 16-fold degenerate for m1 6= m2, m3 6= 0, and that

is reduced by factors 2’s according m1 = m2 or m3 = 0 (remember there are no physically

acceptable solutions for m1,m2 = 0). In any case, such degeneracy is completely lifted by

considering the values of the Hopf charge QH (3.3), the Noether charge Q(1) (4.2) (or any

other Q(n)), and the angular momentum L3 (5.1).

The solitons we have constructed have a connection with the Yang-Mills (YM) theory.

At the classical level, they correspond to vacuum configurations of YM. In fact, any solution

of any field theory with target space S2 can be mapped into a vacuum of SU(2) YM. Indeed,

consider a SU(2) gauge theory with gauge potencial ~Wµ, with a Higgs field ~φ in the triplet

representation (the arrows stand for the orientation in the SU(2) algebra). The Higgs

vacuum, V (φ) = 0 and Dµ
~φ = 0, is achieved with ~φ = v~n, and ~Wµ = 1

e
~n ∧ ∂µ~n + ~nBµ,

where e is the gauge coupling constant, ~n2 = 1, v is the minimum of V , and Bµ is an

arbitrary U(1) gauge potential. That is in fact, the field configuration of a ’t Hooft-Polyakov

monopole away from its core. The field strength is ~Fµν = ~n
(

1
e
Hµν + ∂µBν − ∂νBµ

)

, with

Hµν as in (1.2). If we take Bµ to be proportional to the potential of the Hopf charge

density (3.1), i.e. Bµ = − i
e

(

Z†∂µZ − ∂µZ† Z
)

, then ∂µBν − ∂νBµ = −1
e
Hµν , for any Z,

and ~Fµν vanishes. Notice that, although ~Fµν is local in the fields ~n, the same is not true

for ~Wµ. The same connection can be made with a pure YM (without Higgs) using the

Cho-Faddeev-Niemi decomposition of ~Wµ [7]. Such connection with YM is independent of

the dynamics of the fields ~n. The theory (1.1) becomes relevant at the quantum level. At

low energies it is reasonable to take ~n as an order parameter and so a degree of freedom of
~Wµ. The low energy effective action Seff. of YM will then contain (1.1) as one of its terms,

since it is a marginal operator [8]. The classical solutions of Seff. play an important role

in the generating functional calculations, and the solutions we have constructed can then

perhaps be useful in a perturbative expansion of Seff. around (1.1). See [9] for a further

connection between (1.1) and YM.
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